{ "id": "1411.6963", "version": "v1", "published": "2014-11-14T01:53:32.000Z", "updated": "2014-11-14T01:53:32.000Z", "title": "On certain quaternary quadratic forms", "authors": [ "Kazuhide Matsuda" ], "categories": [ "math.NT" ], "abstract": "In this paper, we determine all the positive integers $a, b$ and $c$ such that every nonnegative integer can be represented as $$ f^{a,b}_c(x,y,z,w)=ax^2+by^2+c(z^2+zw+w^2) \\,\\, \\textrm{with} \\,\\,x,y,z,w\\in\\mathbb{Z}. $$ Furthermore, we prove that $f^{a,b}_c$ can represent all the nonnegative integers if it represents $n=1,2,3,5,6,10.$", "revisions": [ { "version": "v1", "updated": "2014-11-14T01:53:32.000Z" } ], "analyses": { "subjects": [ "14K25", "11E25" ], "keywords": [ "quaternary quadratic forms", "nonnegative integer", "positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6963M" } } }