{ "id": "1411.6950", "version": "v1", "published": "2014-11-25T18:17:54.000Z", "updated": "2014-11-25T18:17:54.000Z", "title": "Fourier multipliers on graded Lie groups", "authors": [ "Veronique Fischer", "Michael Ruzhansky" ], "comment": "28 pages", "categories": [ "math.FA", "math.RT" ], "abstract": "We study the $L^p$-boundedness of Fourier multipliers defined on graded nilpotent Lie groups via their group Fourier transform. We show that H\\\"ormander type conditions on the Fourier multipliers imply $L^p$-boundedness. We express these conditions using difference operators and positive Rockland operators. We also obtain a more refined condition using Sobolev spaces on the dual of the group which are defined and studied in this paper.", "revisions": [ { "version": "v1", "updated": "2014-11-25T18:17:54.000Z" } ], "analyses": { "subjects": [ "43A22", "43A15", "22E30" ], "keywords": [ "fourier multipliers", "graded lie groups", "graded nilpotent lie groups", "group fourier transform", "sobolev spaces" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6950F" } } }