{ "id": "1411.6945", "version": "v1", "published": "2014-11-25T18:05:29.000Z", "updated": "2014-11-25T18:05:29.000Z", "title": "Local Descriptions of Roots of Cubic Equations over P-adic Fields", "authors": [ "Mansoor Saburov", "Mohd Ali Khameini Ahmad" ], "comment": "19 pages", "categories": [ "math.NT", "math.AC", "math.RA" ], "abstract": "The most frequently asked question in the $p-$adic lattice models of statistical mechanics is that whether a root of a polynomial equation belongs to domains $\\mathbb{Z}_p^{*}, \\ \\mathbb{Z}_p\\setminus\\mathbb{Z}_p^{*}, \\ \\mathbb{Z}_p, \\ \\mathbb{Q}_p\\setminus\\mathbb{Z}_p^{*}, \\ \\mathbb{Q}_p\\setminus\\left(\\mathbb{Z}_p\\setminus\\mathbb{Z}_p^{*}\\right), \\ \\mathbb{Q}_p\\setminus\\mathbb{Z}_p, \\ \\mathbb{Q}_p $ or not. However, this question was open even for lower degree polynomial equations. In this paper, we give local descriptions of roots of cubic equations over the $p-$adic fields for $p>3$.", "revisions": [ { "version": "v1", "updated": "2014-11-25T18:05:29.000Z" } ], "analyses": { "keywords": [ "cubic equations", "local descriptions", "p-adic fields", "lower degree polynomial equations", "polynomial equation belongs" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6945S" } } }