{ "id": "1411.6802", "version": "v1", "published": "2014-11-25T10:39:22.000Z", "updated": "2014-11-25T10:39:22.000Z", "title": "Metastability of the Ising model on random regular graphs at zero temperature", "authors": [ "Sander Dommers" ], "categories": [ "math.PR", "cond-mat.stat-mech" ], "abstract": "We study the metastability of the ferromagnetic Ising model on a random $r$-regular graph in the zero temperature limit. We prove that in the presence of a small positive external field the time that it takes to go from the all minus state to the all plus state behaves like ${\\exp(\\beta (r/2+ \\mathcal{O}(\\sqrt{r}))n)}$ when the inverse temperature $\\beta\\rightarrow\\infty$ and the number of vertices $n$ is large enough. The proof is based on the so-called pathwise approach and bounds on the isoperimetric number of random regular graphs.", "revisions": [ { "version": "v1", "updated": "2014-11-25T10:39:22.000Z" } ], "analyses": { "subjects": [ "60K35", "82C20" ], "keywords": [ "random regular graphs", "metastability", "zero temperature limit", "plus state behaves", "small positive external field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6802D" } } }