{ "id": "1411.6796", "version": "v1", "published": "2014-11-25T10:29:50.000Z", "updated": "2014-11-25T10:29:50.000Z", "title": "A note on repelling periodic points for meromorphic functions with bounded set of singular values", "authors": [ "Anna Miriam Benini" ], "categories": [ "math.DS" ], "abstract": "Let $f$ be a meromorphic function with bounded set of singular values and for which infinity is a logarithmic singularity. Then we show that $f$ has infinitely many repelling periodic points for any minimal period $n\\geq1$, using a much simpler argument than the more general results for arbitrary entire transcendental functions.", "revisions": [ { "version": "v1", "updated": "2014-11-25T10:29:50.000Z" } ], "analyses": { "subjects": [ "37F10", "37F20" ], "keywords": [ "repelling periodic points", "meromorphic function", "singular values", "bounded set", "arbitrary entire transcendental functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6796B" } } }