{ "id": "1411.6755", "version": "v1", "published": "2014-11-25T07:57:23.000Z", "updated": "2014-11-25T07:57:23.000Z", "title": "On Fenchel-Nielsen Coordinates of Surface Group Representations into SU(3,1)", "authors": [ "Krishnendu Gongopadhyay", "Shiv Parsad" ], "categories": [ "math.GT" ], "abstract": "Let $\\Sigma_g$ be a compact, orientable surface of genus $g \\geq 2$. We ask the question of parametrizing discrete, faithful, totally loxodromic representations in the deformation space $Hom(\\pi_1(\\Sigma_g), {\\rm SU}(3,1))//{\\rm SU}(3,1)$. We show that such a representation, under some hypothesis, can be specified by $30g-30$ real parameters.", "revisions": [ { "version": "v1", "updated": "2014-11-25T07:57:23.000Z" } ], "analyses": { "keywords": [ "surface group representations", "fenchel-nielsen coordinates", "deformation space", "totally loxodromic representations", "real parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6755G" } } }