{ "id": "1411.6310", "version": "v1", "published": "2014-11-23T22:35:34.000Z", "updated": "2014-11-23T22:35:34.000Z", "title": "On parabolic induction on inner forms of the general linear group over a non-archimedean local field", "authors": [ "Erez Lapid", "Alberto Mínugez" ], "comment": "Para Lou, en el d\\'ia de su nacimiento, with an appendix joint with Marko Tadi\\'c", "categories": [ "math.NT", "math.RT" ], "abstract": "We give new criteria for the irreducibility of parabolic induction on the general linear group and its inner forms over a local non-archimedean field. In particular, we give a necessary and sufficient condition when the inducing data is of the form $\\pi\\otimes\\sigma$ where $\\pi$ is a Speh representation and $\\sigma$ is an arbitrary irreducible representation. As an application we simplify the proof of the classification of the unitary dual.", "revisions": [ { "version": "v1", "updated": "2014-11-23T22:35:34.000Z" } ], "analyses": { "keywords": [ "general linear group", "non-archimedean local field", "parabolic induction", "inner forms", "local non-archimedean field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6310L" } } }