{ "id": "1411.6295", "version": "v1", "published": "2014-11-23T20:42:33.000Z", "updated": "2014-11-23T20:42:33.000Z", "title": "The Balmer spectrum of a tame stack", "authors": [ "Jack Hall" ], "categories": [ "math.AG" ], "abstract": "Let $X$ be a quasi-compact algebraic stack with quasi-finite and separated diagonal. We classify the thick $\\otimes$-ideals of $\\mathsf{D}_{\\mathrm{qc}}(X)^c$. If $X$ is tame, then we also compute the Balmer spectrum of the $\\otimes$-triangulated category of perfect complexes on $X$. In addition, if $X$ admits a coarse space $X_{\\mathrm{cs}}$, then we prove that the Balmer spectra of $X$ and $X_{\\mathrm{cs}}$ are naturally isomorphic.", "revisions": [ { "version": "v1", "updated": "2014-11-23T20:42:33.000Z" } ], "analyses": { "subjects": [ "14F05", "13D09", "14A20", "18G10" ], "keywords": [ "balmer spectrum", "tame stack", "quasi-compact algebraic stack", "coarse space", "perfect complexes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.6295H" } } }