{ "id": "1411.5610", "version": "v1", "published": "2014-11-20T17:20:46.000Z", "updated": "2014-11-20T17:20:46.000Z", "title": "Nonuniform Sampling and Recovery of Bandlimited Functions in Higher Dimensions", "authors": [ "Keaton Hamm" ], "comment": "14 pages. Submitted", "categories": [ "math.FA", "math.CA" ], "abstract": "We provide sufficient conditions on a family of functions $(\\phi_\\alpha)_{\\alpha\\in A}:\\mathbb{R}^d\\to\\mathbb{R}^d$ for sampling of multivariate bandlimited functions at certain nonuniform sequences of points in $\\mathbb{R}^d$. We consider interpolation of functions whose Fourier transform is supported in some small ball in $\\mathbb{R}^d$ at scattered points $(x_j)_{j\\in\\mathbb{N}}$ such that the complex exponentials $\\left(e^{-i\\langle x_j,\\cdot\\rangle}\\right)_{j\\in\\mathbb{N}}$ form a Riesz basis for the $L_2$ space of a convex body containing the ball. Recovery results as well as corresponding approximation orders in terms of the parameter $\\alpha$ are obtained.", "revisions": [ { "version": "v1", "updated": "2014-11-20T17:20:46.000Z" } ], "analyses": { "subjects": [ "41A05", "41A30", "42C30" ], "keywords": [ "higher dimensions", "nonuniform sampling", "sufficient conditions", "corresponding approximation orders", "recovery results" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.5610H" } } }