{ "id": "1411.5565", "version": "v1", "published": "2014-11-20T15:06:34.000Z", "updated": "2014-11-20T15:06:34.000Z", "title": "Dynamics of annulus maps II: periodic points for coverings", "authors": [ "Jorge Iglesias", "Aldo Portela", "Alvaro Rovella", "Juliana Xavier" ], "categories": [ "math.DS" ], "abstract": "Let $f$ be a covering map of the open annulus $A= S^1\\times (0,1)$ of degree $d$ , $|d|>1$. Assume that $f$ preserves an essential (i.e not contained in a disk of $A$) compact subset $K$. We show that $f$ has at least the same number of periodic points in each period as the map $z^d$ in $S^1.$", "revisions": [ { "version": "v1", "updated": "2014-11-20T15:06:34.000Z" } ], "analyses": { "keywords": [ "periodic points", "annulus maps", "open annulus", "compact subset", "covering map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.5565I" } } }