{ "id": "1411.5387", "version": "v1", "published": "2014-11-19T21:22:21.000Z", "updated": "2014-11-19T21:22:21.000Z", "title": "A uniqueness and regularity criterion for Q-tensor models with Neumann boundary conditions", "authors": [ "Francisco Guillén-González", "María Ángeles Rodríguez-Bellido" ], "comment": "13 pages", "categories": [ "math.AP" ], "abstract": "We give a regularity criterion for a $Q$-tensor system modeling a nematic Liquid Crystal, under homogeneous Neumann boundary conditions for the tensor $Q$. Starting of a criterion only imposed on the velocity field ${\\bf u}$ two results are proved; the uniqueness of weak solutions and the global in time weak regularity for the time derivative $(\\partial_t {\\bf u},\\partial_t Q)$. This paper extends the work done in [F. Guill\\'en-Gonz\\'alez, M.A. Rodr\\'iguez-Bellido \\& M.A. Rojas-Medar, Sufficient conditions for regularity and uniqueness of a 3D nematic liquid crystal model, Math. Nachr. 282 (2009), no. 6, 846-867] for a nematic Liquid Crystal model formulated in $({\\bf u},{\\bf d})$, where ${\\bf d}$ denotes the orientation vector of the liquid crystal molecules.", "revisions": [ { "version": "v1", "updated": "2014-11-19T21:22:21.000Z" } ], "analyses": { "subjects": [ "35B65", "35K51", "35Q35", "76A15", "76D03" ], "keywords": [ "neumann boundary conditions", "regularity criterion", "q-tensor models", "uniqueness", "liquid crystal model" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.5387G" } } }