{ "id": "1411.5192", "version": "v1", "published": "2014-11-19T12:00:01.000Z", "updated": "2014-11-19T12:00:01.000Z", "title": "On positive solutions for $(p,q)$-Laplace equations with two parameters", "authors": [ "Vladimir Bobkov", "Mieko Tanaka" ], "comment": "28 pages, 3 figures", "categories": [ "math.AP" ], "abstract": "We study the existence and non-existence of positive solutions for the $(p,q)$-Laplace equation $-\\Delta_p u -\\Delta_q u = \\alpha |u|^{p-2} u + \\beta |u|^{q-2} u$, where $p \\neq q$, under the zero Dirichlet boundary condition in $\\Omega$. The main result of our research is the construction of a continuous curve in $(\\alpha,\\beta)$ plane, which becomes a threshold between the existence and non-existence of positive solutions. Furthermore, we provide the example of domains $\\Omega$ for which the corresponding first Dirichlet eigenvalue of $-\\Delta_p$ is not monotone w.r.t. $p > 1$.", "revisions": [ { "version": "v1", "updated": "2014-11-19T12:00:01.000Z" } ], "analyses": { "subjects": [ "35J62", "35J20", "35P30" ], "keywords": [ "positive solutions", "laplace equation", "zero dirichlet boundary condition", "parameters", "corresponding first dirichlet eigenvalue" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }