{ "id": "1411.4719", "version": "v1", "published": "2014-11-18T02:29:12.000Z", "updated": "2014-11-18T02:29:12.000Z", "title": "Boundary integral operator for the fractional Laplacian in the bounded smooth domain", "authors": [ "TongKeun Chang" ], "categories": [ "math.AP" ], "abstract": "We study the boundary integral operator induced from the fractional Laplace equation in a bounded smooth domain. For $1/2 < \\alpha? < 1$, we show the bijectivity of the boundary integral operator $S_{2\\alpha} : L^p(\\partial \\Omega) \\rightarrow H^{2\\alpha-1}_p (\\partial \\Omega), 1 < p < 1$. As an application, we show the existence of the solution of the boundary value problem of the fractional Laplace equation.", "revisions": [ { "version": "v1", "updated": "2014-11-18T02:29:12.000Z" } ], "analyses": { "keywords": [ "bounded smooth domain", "fractional laplacian", "fractional laplace equation", "boundary value problem", "boundary integral operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.4719C" } } }