{ "id": "1411.4414", "version": "v1", "published": "2014-11-17T10:11:12.000Z", "updated": "2014-11-17T10:11:12.000Z", "title": "The role of the mean curvature in a Hardy-Sobolev trace inequality", "authors": [ "Mouhamed Moustapha Fall", "Ignace Aristide Minlend", "El hadji Abdoulaye Thiam" ], "comment": "17 pages", "categories": [ "math.AP" ], "abstract": "The Hardy-Sobolev trace inequality can be obtained via Harmonic extensions on the half-space of the Stein and Weiss weighted Hardy-Littlewood-Sobolev inequality. In this paper we consider a bounded domain and study the influence of the boundary mean curvature in the Hardy-Sobolev trace inequality on the underlying domain. We prove existence of minimizers when the mean curvature is negative at the singular point of the Hardy potential.", "revisions": [ { "version": "v1", "updated": "2014-11-17T10:11:12.000Z" } ], "analyses": { "keywords": [ "hardy-sobolev trace inequality", "boundary mean curvature", "weiss weighted hardy-littlewood-sobolev inequality", "singular point", "hardy potential" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.4414M" } } }