{ "id": "1411.4153", "version": "v1", "published": "2014-11-15T14:51:58.000Z", "updated": "2014-11-15T14:51:58.000Z", "title": "Petviashvilli's Method for the Dirichlet Problem", "authors": [ "Derek Olson", "Soumitra Shukla", "Gideon Simpson", "Daniel Spirn" ], "comment": "33 pages, 10 figures", "categories": [ "math.AP", "math.NA" ], "abstract": "We examine the Petviashvilli method for solving the equation $ \\phi - \\Delta \\phi = |\\phi|^{p-1} \\phi$ on a bounded domain $\\Omega \\subset \\mathbb{R}^d$ with Dirichlet boundary conditions. We prove that a ground state is a local attractor of the iteration procedure, similar to the results on $\\mathbb{R}^d$ by Pelinovsky and Stepanyants (2004). We prove a global convergence result by generating a suite of nonlinear inequalities for the iteration sequence, and we show that the sequence has a natural energy that decreases along the sequence.", "revisions": [ { "version": "v1", "updated": "2014-11-15T14:51:58.000Z" } ], "analyses": { "subjects": [ "35J60", "35C08", "65N12" ], "keywords": [ "petviashvillis method", "dirichlet problem", "dirichlet boundary conditions", "global convergence result", "iteration sequence" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.4153O" } } }