{ "id": "1411.4125", "version": "v1", "published": "2014-11-15T08:51:09.000Z", "updated": "2014-11-15T08:51:09.000Z", "title": "A $q$-analogue of derivations on the tensor algebra and the $q$-Schur--Weyl duality", "authors": [ "Minoru Itoh" ], "comment": "9 pages", "categories": [ "math.RT", "math.QA" ], "abstract": "This paper presents a $q$-analogue of an extension of the tensor algebra given by the same author. This new algebra naturally contains the ordinary tensor algebra and the Iwahori--Hecke algebra type $A$ of infinite degree. Namely this algebra can be regarded as a natural mix of these two algebras. Moreover, we can consider natural \"derivations\" on this algebra. Using these derivations, we can easily prove the $q$-Schur--Weyl duality (the duality between the quantum enveloping algebra of the general linear Lie algebra and the Iwahori--Hecke algebra of type $A$).", "revisions": [ { "version": "v1", "updated": "2014-11-15T08:51:09.000Z" } ], "analyses": { "subjects": [ "15A72", "17B37", "20C08" ], "keywords": [ "schur-weyl duality", "derivations", "general linear lie algebra", "ordinary tensor algebra", "iwahori-hecke algebra type" ], "publication": { "doi": "10.1007/s11005-015-0793-7", "journal": "Letters in Mathematical Physics", "year": 2015, "month": "Oct", "volume": 105, "number": 10, "pages": 1467 }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015LMaPh.105.1467I" } } }