{ "id": "1411.3759", "version": "v1", "published": "2014-11-13T22:37:58.000Z", "updated": "2014-11-13T22:37:58.000Z", "title": "Finiteness of unramified deformation rings", "authors": [ "Patrick B. Allen", "Frank Calegari" ], "comment": "To appear in Algebra & Number Theory", "categories": [ "math.NT" ], "abstract": "We prove that the universal unramified deformation ring $R^{\\mathrm{unr}}$ of a continuous Galois representation $\\overline{\\rho}: G_{F^{+}} \\rightarrow \\mathrm{GL}_n(k)$ (for a totally real field $F^{+}$ and finite field $k$) is finite over $\\mathcal{O} = W(k)$ in many cases. We also prove (under similar hypotheses) that the universal deformation ring $R^{\\mathrm{univ}}$ is finite over the local deformation ring $R^{\\mathrm{loc}}$.", "revisions": [ { "version": "v1", "updated": "2014-11-13T22:37:58.000Z" } ], "analyses": { "subjects": [ "11F80", "11F70" ], "keywords": [ "finiteness", "continuous galois representation", "totally real field", "finite field", "similar hypotheses" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.3759A" } } }