{ "id": "1411.3646", "version": "v1", "published": "2014-11-13T18:20:44.000Z", "updated": "2014-11-13T18:20:44.000Z", "title": "Haglund's conjecture on 3-column Macdonald polynomials", "authors": [ "Jonah Blasiak" ], "comment": "30 pages, 2 figures", "categories": [ "math.CO", "math.RA" ], "abstract": "We prove a positive combinatorial formula for the Schur expansion of LLT polynomials indexed by a 3-tuple of skew shapes. This verifies a conjecture of Haglund. The proof requires expressing a noncommutative Schur function as a positive sum of monomials in Lam's algebra of ribbon Schur operators. Combining this result with the expression of Haglund, Haiman, and Loehr for transformed Macdonald polynomials in terms of LLT polynomials then yields a positive combinatorial rule for transformed Macdonald polynomials indexed by a shape with 3 columns.", "revisions": [ { "version": "v1", "updated": "2014-11-13T18:20:44.000Z" } ], "analyses": { "subjects": [ "05E05" ], "keywords": [ "haglunds conjecture", "transformed macdonald polynomials", "llt polynomials", "ribbon schur operators" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.3646B" } } }