{ "id": "1411.3173", "version": "v1", "published": "2014-11-12T13:42:44.000Z", "updated": "2014-11-12T13:42:44.000Z", "title": "On $α$-embedded subsets of products", "authors": [ "Olena Karlova", "Volodymyr Mykhaylyuk" ], "categories": [ "math.GN" ], "abstract": "We prove that every continuous function $f:E\\to Y$ depends on countably many coordinates, if $E$ is an $(\\aleph_1,\\aleph_0)$-invariant pseudo-$\\aleph_1$-compact subspace of a product of topological spaces and $Y$ is a space with a regular $G_\\delta$-diagonal. Using this fact for any $\\alpha<\\omega_1$ we construct an $(\\alpha+1)$-embedded subspace of a completely regular space which is not $\\alpha$-embedded.", "revisions": [ { "version": "v1", "updated": "2014-11-12T13:42:44.000Z" } ], "analyses": { "subjects": [ "54B10", "54C45", "54C20", "54H05" ], "keywords": [ "embedded subsets", "regular space", "compact subspace", "coordinates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.3173K" } } }