{ "id": "1411.2817", "version": "v1", "published": "2014-11-11T14:13:34.000Z", "updated": "2014-11-11T14:13:34.000Z", "title": "Finite-size scaling of survival probability in branching processes", "authors": [ "Rosalba Garcia-Millan", "Francesc Font-Clos", "Alvaro Corral" ], "comment": "5 pages, 2 figures", "categories": [ "cond-mat.stat-mech", "cond-mat.dis-nn" ], "abstract": "Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We reveal the finite-size scaling law of the survival probability for a given branching process ruled by a probability distribution of the number of offspring per element whose standard deviation is finite, obtaining the exact scaling function as well as the critical exponents. Our findings prove the universal behavior of branching processes concerning the survival probability.", "revisions": [ { "version": "v1", "updated": "2014-11-11T14:13:34.000Z" } ], "analyses": { "subjects": [ "05.70.Jk", "45.70.Ht", "05.65.+b" ], "keywords": [ "survival probability", "universal behavior", "exact scaling function", "standard deviation", "probability distribution" ], "publication": { "doi": "10.1103/PhysRevE.91.042122", "journal": "Physical Review E", "year": 2015, "month": "Apr", "volume": 91, "number": 4, "pages": "042122" }, "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015PhRvE..91d2122G" } } }