{ "id": "1411.2058", "version": "v1", "published": "2014-11-07T23:01:26.000Z", "updated": "2014-11-07T23:01:26.000Z", "title": "On the Occurrence of Hecke Eigenvalues and a Lacunarity Question of Serre", "authors": [ "Nahid Walji" ], "comment": "13 pages. To appear in Mathematical Research Letters", "categories": [ "math.NT" ], "abstract": "Let \\pi be a unitary cuspidal automorphic representation for GL(n) over a number field. We establish upper bounds on the number of Hecke eigenvalues of \\pi equal to a fixed complex number. For GL(2), we also determine upper bounds on the number of Hecke eigenvalues with absolute value equal to a fixed number \\gamma; in the case \\gamma=0, this answers a question of Serre. These bounds are then improved upon by restricting to non-dihedral representations. Finally, we obtain analogous bounds for a family of cuspidal automorphic representations for GL(3).", "revisions": [ { "version": "v1", "updated": "2014-11-07T23:01:26.000Z" } ], "analyses": { "keywords": [ "hecke eigenvalues", "lacunarity question", "unitary cuspidal automorphic representation", "occurrence", "absolute value equal" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.2058W" } } }