{ "id": "1411.1932", "version": "v1", "published": "2014-11-07T14:29:21.000Z", "updated": "2014-11-07T14:29:21.000Z", "title": "A Generalization of the $Z^*$-Theorem", "authors": [ "Ellen Henke", "Jason Semeraro" ], "comment": "3 pages", "categories": [ "math.GR" ], "abstract": "Glauberman's $Z^*$-theorem and analogous statements for odd primes show that, for any prime $p$ and any finite group $G$ with Sylow $p$- subgroup $S$, the centre of $G$ is determined by the fusion system $\\mathcal{F}_S(G)$. Building on these results we show a statement that can be considered as a generalization: For any normal subgroup $N$ of $G$, the centralizer $C_S(N)$ is expressed in terms of the fusion system $\\mathcal{F}_S(G)$ and its normal subsystem induced by $N$.", "revisions": [ { "version": "v1", "updated": "2014-11-07T14:29:21.000Z" } ], "analyses": { "subjects": [ "20D20" ], "keywords": [ "generalization", "fusion system", "finite group", "odd primes", "normal subgroup" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.1932H" } } }