{ "id": "1411.1735", "version": "v1", "published": "2014-11-06T20:32:36.000Z", "updated": "2014-11-06T20:32:36.000Z", "title": "Lie Symmetry Analysis for Cosserat Rods", "authors": [ "Dominik L. Michels", "Dmitry A. Lyakhov", "Vladimir P. Gerdt", "Gerrit A. Sobottka", "Andreas G. Weber" ], "comment": "12 Pages, 1 Figure", "journal": "Proceedings of Computer Algebra in Scientific Computing, CASC 2014, Pages 326-336, Lecture Notes in Computer Science, Springer, Sept. 2014", "categories": [ "math.AP", "math.RA" ], "abstract": "We consider a subsystem of the Special Cosserat Theory of Rods and construct an explicit form of its solution that depends on three arbitrary functions in (s,t) and three arbitrary functions in t. Assuming analyticity of the arbitrary functions in a domain under consideration, we prove that the obtained solution is analytic and general. The Special Cosserat Theory of Rods describes the dynamic equilibrium of 1-dimensional continua, i.e. slender structures like fibers, by means of a system of partial differential equations.", "revisions": [ { "version": "v1", "updated": "2014-11-06T20:32:36.000Z" } ], "analyses": { "keywords": [ "lie symmetry analysis", "cosserat rods", "arbitrary functions", "special cosserat theory", "partial differential equations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.1735M" } } }