{ "id": "1411.1703", "version": "v1", "published": "2014-11-06T19:05:07.000Z", "updated": "2014-11-06T19:05:07.000Z", "title": "Explicit surjectivity for Galois representations attached to abelian surfaces", "authors": [ "Davide Lombardo" ], "comment": "Comments are welcome!", "categories": [ "math.NT" ], "abstract": "Let $A$ be an absolutely simple abelian surface without (potential) complex multiplication, defined over the number field $K$. We explicitly give a bound $\\ell_0(A,K)$ such that, for every prime $\\ell>\\ell_0(A,K)$, the image of $\\operatorname{Gal}\\left(\\overline{K}/K\\right)$ in $\\operatorname{Aut}(T_\\ell(A))$ is as large as it is allowed to be by endomorphisms and polarizations.", "revisions": [ { "version": "v1", "updated": "2014-11-06T19:05:07.000Z" } ], "analyses": { "subjects": [ "11G10", "14K15", "11F80" ], "keywords": [ "galois representations", "explicit surjectivity", "absolutely simple abelian surface", "complex multiplication", "number field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.1703L" } } }