{ "id": "1411.1371", "version": "v1", "published": "2014-11-05T19:38:14.000Z", "updated": "2014-11-05T19:38:14.000Z", "title": "Generalizations of generating functions for basic hypergeometric orthogonal polynomials", "authors": [ "Howard S. Cohl", "Roberto S. Costas-Santos", "Philbert R. Hwang" ], "categories": [ "math.CA" ], "abstract": "We derive generalized generating functions for basic hypergeometric orthogonal polynomials by applying connection relations with one free parameter to them. In particular, we generalize generating functions for Askey-Wilson, Rogers/continuous $q$-ultrapherical, little $q$-Laguerre/Wall, and $q$-Laguerre polynomials. Depending on what type of orthogonality these polynomials satisfy, we derive corresponding definite integrals, infinite series, bilateral infinite series, and $q$-integrals.", "revisions": [ { "version": "v1", "updated": "2014-11-05T19:38:14.000Z" } ], "analyses": { "subjects": [ "33C45", "05A15", "33C20", "34L10", "30E20" ], "keywords": [ "basic hypergeometric orthogonal polynomials", "generating functions", "generalizations", "bilateral infinite series", "derive corresponding definite integrals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }