{ "id": "1411.1347", "version": "v1", "published": "2014-11-05T18:15:36.000Z", "updated": "2014-11-05T18:15:36.000Z", "title": "Weyl-Pedersen calculus for some semidirect products of nilpotent Lie groups", "authors": [ "Ingrid Beltita", "Daniel Beltita", "Mihai Pascu" ], "comment": "12 pages", "categories": [ "math.RT", "math.AP" ], "abstract": "For certain nilpotent real Lie groups constructed as semidirect products, algebras of invariant differential operators on some coadjoint orbits are used in the study of boundedness properties of the Weyl-Pedersen calculus of their corresponding unitary irreducible representations. Our main result is applicable to all unitary irreducible representations of arbitrary 3-step nilpotent Lie groups.", "revisions": [ { "version": "v1", "updated": "2014-11-05T18:15:36.000Z" } ], "analyses": { "subjects": [ "17B30", "22E25", "22E27", "35S05" ], "keywords": [ "nilpotent lie groups", "semidirect products", "weyl-pedersen calculus", "unitary irreducible representations", "nilpotent real lie groups" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }