{ "id": "1411.1303", "version": "v1", "published": "2014-11-04T18:05:26.000Z", "updated": "2014-11-04T18:05:26.000Z", "title": "Convex polygons in geometric triangulations", "authors": [ "Adrian Dumitrescu", "Csaba D. Tóth" ], "comment": "19 pages, 5 figures", "categories": [ "math.MG", "cs.DM", "math.CO" ], "abstract": "We show that the maximum number of convex polygons in a triangulation of $n$ points in the plane is $O(1.5029^n)$. This improves an earlier bound of $O(1.6181^n)$ established by van Kreveld, L\\\"offler, and Pach (2012) and almost matches the current best lower bound of $\\Omega(1.5028^n)$ due to the same authors. Given a planar straight-line graph $G$ with $n$ vertices, we show how to compute efficiently the number of convex polygons in $G$.", "revisions": [ { "version": "v1", "updated": "2014-11-04T18:05:26.000Z" } ], "analyses": { "keywords": [ "convex polygons", "geometric triangulations", "current best lower bound", "planar straight-line graph", "maximum number" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.1303D" } } }