{ "id": "1411.1162", "version": "v1", "published": "2014-11-05T06:27:25.000Z", "updated": "2014-11-05T06:27:25.000Z", "title": "Points on Shimura curves rational over imaginary quadratic fields in the non-split case", "authors": [ "Keisuke Arai" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "For an imaginary quadratic field $k$ of class number $>1$, Jordan proved that there are only finitely many isomorphism classes of rational indefinite quaternion division algebras $B$ such that the associated Shimura curve has $k$-rational points and $k$ splits $B$. In this article, we study the case where $k$ does not split $B$, and obtain an analogous result by imposing a certain congruent condition on the discriminant of $B$.", "revisions": [ { "version": "v1", "updated": "2014-11-05T06:27:25.000Z" } ], "analyses": { "subjects": [ "11G18", "14G05" ], "keywords": [ "imaginary quadratic field", "shimura curves rational", "non-split case", "rational indefinite quaternion division algebras" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.1162A" } } }