{ "id": "1411.0985", "version": "v1", "published": "2014-11-04T18:00:51.000Z", "updated": "2014-11-04T18:00:51.000Z", "title": "Finite morphic $p$-groups", "authors": [ "A. Caranti", "C. M. Scoppola" ], "comment": "6 pages", "categories": [ "math.GR" ], "abstract": "According to Li, Nicholson and Zan, a group $G$ is said to be morphic if, for every pair $N_{1}, N_{2}$ of normal subgroups, each of the conditions $G/N_{1} \\cong N_{2}$ and $G/N_{2} \\cong N_{1}$ implies the other. Finite, homocyclic $p$-groups are morphic, and so is the nonabelian group of order $p^{3}$ and exponent $p$, for $p$ an odd prime. In this paper we show that these are the only examples of finite, morphic $p$-groups.", "revisions": [ { "version": "v1", "updated": "2014-11-04T18:00:51.000Z" } ], "analyses": { "subjects": [ "20D15" ], "keywords": [ "finite morphic", "normal subgroups", "nonabelian group", "odd prime", "homocyclic" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.0985C" } } }