{ "id": "1411.0454", "version": "v1", "published": "2014-11-03T12:31:57.000Z", "updated": "2014-11-03T12:31:57.000Z", "title": "A lower bound for the number of conjugacy classes of a finite group", "authors": [ "Attila MarĂ³ti" ], "categories": [ "math.GR" ], "abstract": "Every finite group whose order is divisible by a prime $p$ has at least $2 \\sqrt{p-1}$ conjugacy classes. This answers a question of L. Pyber.", "revisions": [ { "version": "v1", "updated": "2014-11-03T12:31:57.000Z" } ], "analyses": { "keywords": [ "conjugacy classes", "finite group", "lower bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.0454M" } } }