{ "id": "1411.0180", "version": "v1", "published": "2014-11-01T23:10:15.000Z", "updated": "2014-11-01T23:10:15.000Z", "title": "The automorphism group of a shift of linear growth: beyond transitivity", "authors": [ "Van Cyr", "Bryna Kra" ], "categories": [ "math.DS" ], "abstract": "For a finite alphabet $\\mathcal{A}$ and shift $X\\subseteq\\mathcal{A}^{\\mathbb{Z}}$ whose factor complexity function grows at most linearly, we study the algebraic properties of the automorphism group ${\\rm Aut}(X)$. For such systems, we show that every finitely generated subgroup of ${\\rm Aut}(X)$ is virtually ${\\mathbb Z}^d$, in contrast to the behavior when the complexity function grows more quickly. With additional dynamical assumptions we show more: if $X$ is transitive, then ${\\rm Aut}(X)$ is virtually $\\mathbb Z$; if $X$ has dense aperiodic points, then ${\\rm Aut}(X)$ is virtually ${\\mathbb Z}^d$. We also classify all finite groups that arise as the automorphism group of a shift.", "revisions": [ { "version": "v1", "updated": "2014-11-01T23:10:15.000Z" } ], "analyses": { "keywords": [ "automorphism group", "linear growth", "factor complexity function grows", "transitivity", "dense aperiodic points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1411.0180C" } } }