{ "id": "1411.0162", "version": "v1", "published": "2014-11-01T19:49:18.000Z", "updated": "2014-11-01T19:49:18.000Z", "title": "Laplace operators in gamma analysis", "authors": [ "D. Hagedorn", "Y. Kondratiev", "E. Lytvynov", "A. Vershik" ], "categories": [ "math.PR" ], "abstract": "Let $\\mathbb K(\\mathbb R^d)$ denote the cone of discrete Radon measures on $\\mathbb R^d$. The gamma measure $\\mathcal G$ is the probability measure on $\\mathbb K(\\mathbb R^d)$ which is a measure-valued L\\'evy process with intensity measure $s^{-1}e^{-s}\\,ds$ on $(0,\\infty)$. We study a class of Laplace-type operators in $L^2(\\mathbb K(\\mathbb R^d),\\mathcal G)$. These operators are defined as generators of certain (local) Dirichlet forms. The main result of the papers is the essential self-adjointness of these operators on a set of `test' cylinder functions on $\\mathbb K(\\mathbb R^d)$.", "revisions": [ { "version": "v1", "updated": "2014-11-01T19:49:18.000Z" } ], "analyses": { "subjects": [ "60G51", "60G55", "60G57", "60G20", "60H40" ], "keywords": [ "gamma analysis", "laplace operators", "discrete radon measures", "gamma measure", "cylinder functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1326058, "adsabs": "2014arXiv1411.0162H" } } }