{ "id": "1410.8786", "version": "v1", "published": "2014-10-31T16:02:25.000Z", "updated": "2014-10-31T16:02:25.000Z", "title": "Localization and Projections on Bi--Parameter BMO", "authors": [ "Richard Lechner", "Paul F. X. Müller" ], "categories": [ "math.FA" ], "abstract": "We prove that for any operator T on bi--parameter BMO the identity factors through T or Id - T. As a consequence, bi--parameter BMO is a primary Banach space. Bourgain's localization method provides the conceptual framework of our proof. It consists in replacing the factorization problem on the non--separable Banach space bi--parameter BMO by its localized, finite dimensional counterpart. We solve the resulting finite dimensional factorization problems by combinatorics of colored dyadic rectangles.", "revisions": [ { "version": "v1", "updated": "2014-10-31T16:02:25.000Z" } ], "analyses": { "subjects": [ "46B25", "60G46", "46B07", "46B26", "30H35" ], "keywords": [ "resulting finite dimensional factorization problems", "non-separable banach space bi-parameter bmo", "projections", "bourgains localization method", "finite dimensional counterpart" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.8786L" } } }