{ "id": "1410.7898", "version": "v1", "published": "2014-10-29T08:27:49.000Z", "updated": "2014-10-29T08:27:49.000Z", "title": "Arithmetic Properties of Overpartition Triples", "authors": [ "Liuquan Wang" ], "comment": "14 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let ${{\\bar{p}}_{3}}(n)$ be the number of overpartition triples of $n$. We find some congruences for ${\\bar{p}}_{3}(n)$ modulo small powers of 2, such as \\[{{\\bar{p}}_{3}}(16n+14)\\equiv 0 \\pmod{32}, \\quad {{\\bar{p}}_{3}}(8n+7)\\equiv 0 \\pmod{64}.\\] We also establish many arithmetic properties for ${{\\bar{p}}_{3}}(n)$ modulo 7, 9 and 11, involving the following infinite families of Ramanujan-type congruences: for any integers $\\alpha \\ge 1$ and $n \\ge 0$, we have ${{\\bar{p}}_{3}}\\big({{3}^{2\\alpha +1}}(3n+2)\\big)\\equiv 0$ (mod 9) and \\[{{\\bar{p}}_{3}}\\big({{7}^{2\\alpha +1}}(7n+3)\\big)\\equiv {{\\bar{p}}_{3}}\\big({{7}^{2\\alpha +1}}(7n+5)\\big)\\equiv {{\\bar{p}}_{3}}\\big({{7}^{2\\alpha +1}}(7n+6)\\big)\\equiv 0 \\pmod{7}.\\]", "revisions": [ { "version": "v1", "updated": "2014-10-29T08:27:49.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "overpartition triples", "arithmetic properties", "modulo small powers", "infinite families", "ramanujan-type congruences" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.7898W" } } }