{ "id": "1410.7354", "version": "v1", "published": "2014-10-27T19:03:17.000Z", "updated": "2014-10-27T19:03:17.000Z", "title": "The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent", "authors": [ "Martin Möhle" ], "comment": "17 pages", "categories": [ "math.PR" ], "abstract": "The Mittag-Leffler process $X=(X_t)_{t\\ge 0}$ is introduced. This Markov process has the property that its marginal random variables $X_t$ are Mittag-Leffler distributed with parameter $e^{-t}$, $t\\in [0,\\infty)$, and the semigroup $(T_t)_{t\\ge 0}$ of $X$ satisfies $T_tf(x)={\\mathbb E}(f(x^{e^{-t}}X_t))$ for all $x\\ge 0$ and all bounded measurable functions $f:[0,\\infty)\\to{\\mathbb R}$. Further characteristics of the process $X$ are derived, for example an explicit formula for the joint moments of its finite dimensional distributions. The main result states that the block counting process of the Bolthausen-Sznitman $n$-coalescent, properly scaled, converges in the Skorohod topology to the Mittag-Leffler process $X$ as the sample size $n$ tends to infinity.", "revisions": [ { "version": "v1", "updated": "2014-10-27T19:03:17.000Z" } ], "analyses": { "subjects": [ "60F05", "60J27", "92D15", "97K60" ], "keywords": [ "block counting process", "mittag-leffler process", "bolthausen-sznitman coalescent", "scaling limit", "marginal random variables" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.7354M" } } }