{ "id": "1410.7287", "version": "v1", "published": "2014-10-27T16:05:26.000Z", "updated": "2014-10-27T16:05:26.000Z", "title": "The $k$-metric dimension of the lexicographic product of graphs", "authors": [ "A. Estrada-Moreno", "I. G. Yero", "J. A. Rodríguez-Velázquez" ], "comment": "18 pages", "categories": [ "math.CO" ], "abstract": "Given a simple and connected graph $G=(V,E)$, and a positive integer $k$, a set $S\\subseteq V$ is said to be a $k$-metric generator for $G$, if for any pair of different vertices $u,v\\in V$, there exist at least $k$ vertices $w_1,w_2,...,w_k\\in S$ such that $d_G(u,w_i)\\ne d_G(v,w_i)$, for every $i\\in \\{1,...,k\\}$, where $d_G(x,y)$ denotes the distance between $x$ and $y$. The minimum cardinality of a $k$-metric generator is the $k$-metric dimension of $G$. A set $S\\subseteq V$ is a $k$-adjacency generator for $G$ if any two different vertices $x,y\\in V(G)$ satisfy $|((N_G(x)\\triangledown N_G(y))\\cup\\{x,y\\})\\cap S|\\ge k$, where $N_G(x)\\triangledown N_G(y)$ is the symmetric difference of the neighborhoods of $x$ and $y$. The minimum cardinality of any $k$-adjacency generator is the $k$-adjacency dimension of $G$. In this article we obtain tight bounds and closed formulae for the $k$-metric dimension of the lexicographic product of graphs in terms of the $k$-adjacency dimension of the factor graphs.", "revisions": [ { "version": "v1", "updated": "2014-10-27T16:05:26.000Z" } ], "analyses": { "subjects": [ "05C12", "05C76" ], "keywords": [ "metric dimension", "lexicographic product", "adjacency generator", "minimum cardinality", "adjacency dimension" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.7287E" } } }