{ "id": "1410.7242", "version": "v1", "published": "2014-10-27T13:57:42.000Z", "updated": "2014-10-27T13:57:42.000Z", "title": "Operators approximable by hypercyclic operators", "authors": [ "James Boland" ], "categories": [ "math.FA" ], "abstract": "We show that operators on a separable infinite dimensional Banach space $X$ of the form $I +S$, where $S$ is an operator with dense generalised kernel, must lie in the norm closure of the hypercyclic operators on $X$, in fact in the closure of the mixing operators.", "revisions": [ { "version": "v1", "updated": "2014-10-27T13:57:42.000Z" } ], "analyses": { "keywords": [ "hypercyclic operators", "operators approximable", "separable infinite dimensional banach space", "norm closure", "dense generalised kernel" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.7242B" } } }