{ "id": "1410.7113", "version": "v1", "published": "2014-10-27T03:28:08.000Z", "updated": "2014-10-27T03:28:08.000Z", "title": "The Feynman propagator on perturbations of Minkowski space", "authors": [ "Jesse Gell-Redman", "Nick Haber", "AndrĂ¡s Vasy" ], "comment": "42 pages, 4 figures", "categories": [ "math.AP" ], "abstract": "In this paper we analyze the Feynman wave equation on Lorentzian scattering spaces. We prove that the Feynman propagator exists as a map between certain Banach spaces defined by decay and microlocal Sobolev regularity properties. We go on to show that certain nonlinear wave equations arising in QFT are well-posed for small data in the Feynman setting.", "revisions": [ { "version": "v1", "updated": "2014-10-27T03:28:08.000Z" } ], "analyses": { "subjects": [ "35P25", "35S05", "47A53", "81Q12", "35L71" ], "keywords": [ "feynman propagator", "minkowski space", "microlocal sobolev regularity properties", "perturbations", "feynman wave equation" ], "publication": { "doi": "10.1007/s00220-015-2520-8", "journal": "Communications in Mathematical Physics", "year": 2016, "month": "Feb", "volume": 342, "number": 1, "pages": 333 }, "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1324464, "adsabs": "2016CMaPh.342..333G" } } }