{ "id": "1410.6927", "version": "v1", "published": "2014-10-25T15:04:35.000Z", "updated": "2014-10-25T15:04:35.000Z", "title": "Scaling functions in the square Ising model", "authors": [ "S. Hassani", "J-M. Maillard" ], "comment": "26 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We show and give the linear differential operators ${\\cal L}^{scal}_q$ of order q= n^2/4+n+7/8+(-1)^n/8, for the integrals $I_n(r)$ which appear in the two-point correlation scaling function of Ising model $ F_{\\pm}(r)= \\lim_{scaling} {\\cal M}_{\\pm}^{-2} < \\sigma_{0,0} \\, \\sigma_{M,N}> = \\sum_{n} I_{n}(r)$. The integrals $ I_{n}(r)$ are given in expansion around r= 0 in the basis of the formal solutions of $\\, {\\cal L}^{scal}_q$ with transcendental combination coefficients. We find that the expression $ r^{1/4}\\,\\exp(r^2/8)$ is a solution of the Painlev\\'e VI equation in the scaling limit. Combinations of the (analytic at $ r= 0$) solutions of $ {\\cal L}^{scal}_q$ sum to $ \\exp(r^2/8)$. We show that the expression $ r^{1/4} \\exp(r^2/8)$ is the scaling limit of the correlation function $ C(N, N)$ and $ C(N, N+1)$. The differential Galois groups of the factors occurring in the operators $ {\\cal L}^{scal}_q$ are given.", "revisions": [ { "version": "v1", "updated": "2014-10-25T15:04:35.000Z" } ], "analyses": { "subjects": [ "34M55", "47E05", "81Qxx", "32G34", "34Lxx", "34Mxx", "14Kxx" ], "keywords": [ "square ising model", "transcendental combination coefficients", "two-point correlation scaling function", "linear differential operators", "painleve vi equation" ], "tags": [ "journal article" ], "publication": { "doi": "10.1088/1751-8113/48/11/115205", "journal": "Journal of Physics A Mathematical General", "year": 2015, "month": "Mar", "volume": 48, "number": 11, "pages": 115205 }, "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015JPhA...48k5205H" } } }