{ "id": "1410.6912", "version": "v1", "published": "2014-10-25T11:11:02.000Z", "updated": "2014-10-25T11:11:02.000Z", "title": "Locally homogeneous nearly Kähler manifolds", "authors": [ "Vicente Cortés", "José J. Vásquez" ], "categories": [ "math.DG" ], "abstract": "We construct locally homogeneous 6-dimensional nearly K\\\"ahler manifolds as quotients of homogeneous nearly K\\\"ahler manifolds $M$ by freely acting finite subgroups of $Aut_0(M)$. We show that non-trivial such groups do only exists if $M=S^3\\times S^3$. In that case we classify all freely acting subgroups of $Aut_0(M)=SU (2) \\times SU (2) \\times SU (2)$ of the form $A\\times B$, where $A\\subset SU (2) \\times SU (2)$ and $B\\subset SU (2)$.", "revisions": [ { "version": "v1", "updated": "2014-10-25T11:11:02.000Z" } ], "analyses": { "subjects": [ "53C25" ], "keywords": [ "kähler manifolds", "locally homogeneous", "freely acting finite subgroups", "non-trivial", "freely acting subgroups" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.6912C" } } }