{ "id": "1410.6873", "version": "v1", "published": "2014-10-25T02:52:25.000Z", "updated": "2014-10-25T02:52:25.000Z", "title": "Asymptotic Stability for KdV Solitons in Weighted $H^s$ Spaces", "authors": [ "Brian Pigott", "Sarah Raynor" ], "categories": [ "math.AP" ], "abstract": "In this work, we consider the stability of solitons for the KdV equation below the energy space, using spatially-exponentially-weighted norms. Using a combination of the $I$-method and spectral analysis following Pego and Weinstein, we are able to show that, in the exponentially weighted space, the perturbation of a soliton decays exponentially for arbitrarily long times. The finite time restriction is due to a lack of global control of the unweighted perturbation.", "revisions": [ { "version": "v1", "updated": "2014-10-25T02:52:25.000Z" } ], "analyses": { "keywords": [ "kdv solitons", "asymptotic stability", "finite time restriction", "kdv equation", "energy space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.6873P" } } }