{ "id": "1410.6125", "version": "v1", "published": "2014-10-22T18:15:23.000Z", "updated": "2014-10-22T18:15:23.000Z", "title": "Profile decomposition for sequences of Borel measures", "authors": [ "Mihai Mariş" ], "comment": "20 pages", "categories": [ "math.AP", "math.CA", "math.FA" ], "abstract": "We prove that, if dichotomy occurs when the concentration-compactness principle is used, the dichotomizing sequence can be choosen so that a nontrivial part of it concentrates. Iterating this argument leads to a profile decomposition for arbitrary sequences of bounded Borel measures. To illustrate our results we give an application to the structure of bouded sequences in the Sobolev space $ W^{1, p}(\\R^N)$.", "revisions": [ { "version": "v1", "updated": "2014-10-22T18:15:23.000Z" } ], "analyses": { "keywords": [ "profile decomposition", "dichotomy occurs", "bounded borel measures", "arbitrary sequences", "concentration-compactness principle" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.6125M" } } }