{ "id": "1410.5857", "version": "v1", "published": "2014-10-21T21:11:21.000Z", "updated": "2014-10-21T21:11:21.000Z", "title": "Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits", "authors": [ "T. C. Batista", "J. S. Gonschorowski", "F. A. Tal" ], "categories": [ "math.DS" ], "abstract": "Let $K$ be the Cantor set. We prove that arbitrarily close to a homeomorphism $T:K\\rightarrow K$ there exists a homeomorphism $\\widetilde T:K\\rightarrow K$ such that the $\\alpha$-limit and the $\\omega$-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism $T:K\\rightarrow K$ there exists an endomorphism $\\widetilde T:K\\rightarrow K$ close to $T$ such that every orbit is finally periodic.", "revisions": [ { "version": "v1", "updated": "2014-10-21T21:11:21.000Z" } ], "analyses": { "keywords": [ "ergodic measures", "periodic orbit", "symbolic dynamics", "arbitrarily close", "cantor set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.5857B" } } }