{ "id": "1410.5671", "version": "v1", "published": "2014-10-21T14:12:11.000Z", "updated": "2014-10-21T14:12:11.000Z", "title": "The Hasse principle for lines on del Pezzo surfaces", "authors": [ "Jörg Jahnel", "Daniel Loughran" ], "comment": "32 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "In this paper, we consider the following problem: Does there exist a cubic surface over $\\mathbb{Q}$ which contains no line over $\\mathbb{Q}$, yet contains a line over every completion of $\\mathbb{Q}$? This question may be interpreted as asking whether the Hilbert scheme of lines on a cubic surface can fail the Hasse principle. We also consider analogous problems, over arbitrary number fields, for other del Pezzo surfaces and complete intersections of two quadrics.", "revisions": [ { "version": "v1", "updated": "2014-10-21T14:12:11.000Z" } ], "analyses": { "subjects": [ "11G35", "11R32", "14J26", "14-04" ], "keywords": [ "del pezzo surfaces", "hasse principle", "cubic surface", "arbitrary number fields", "hilbert scheme" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.5671J" } } }