{ "id": "1410.5628", "version": "v1", "published": "2014-10-21T12:05:22.000Z", "updated": "2014-10-21T12:05:22.000Z", "title": "Arithmetic Properties of Partition Quadruples With Odd Parts Distinct", "authors": [ "Liuquan Wang" ], "comment": "10 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $\\mathrm{pod}_{-4}(n)$ denote the number of partition quadruples of $n$ where the odd parts in each partition are distinct. We find many arithmetic properties of $\\mathrm{pod}_{-4}(n)$ involving the following infinite family of congruences: for any integers $\\alpha \\ge 1$ and $n \\ge 0$, \\[\\mathrm{pod}_{-4}\\Big({{3}^{\\alpha +1}}n+\\frac{5\\cdot {{3}^{\\alpha }}+1}{2}\\Big)\\equiv 0 \\pmod{9}.\\] We also establish some internal congruences and some congruences modulo 2, 5 and 8 satisfied by $\\mathrm{pod}_{-4}(n)$.", "revisions": [ { "version": "v1", "updated": "2014-10-21T12:05:22.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "odd parts distinct", "partition quadruples", "arithmetic properties", "internal congruences", "congruences modulo" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }