{ "id": "1410.5503", "version": "v1", "published": "2014-10-20T23:43:25.000Z", "updated": "2014-10-20T23:43:25.000Z", "title": "A proof of the Landau-Ginzburg/Calabi-Yau correspondence via the crepant transformation conjecture", "authors": [ "Nathan Priddis", "Y. -P. Lee", "Mark Shoemaker" ], "comment": "42 pages", "categories": [ "math.AG", "math-ph", "math.MP" ], "abstract": "We establish a new relationship (the MLK correspondence) between twisted FJRW theory and local Gromov-Witten theory in all genera. As a consequence, we show that the Landau-Ginzburg/Calabi-Yau correspondence is implied by the crepant transformation conjecture for Fermat type in genus zero. We use this to then prove the Landau-Ginzburg/Calabi-Yau correspondence for Fermat type, generalizing the results of A. Chiodo and Y. Ruan.", "revisions": [ { "version": "v1", "updated": "2014-10-20T23:43:25.000Z" } ], "analyses": { "subjects": [ "14N35", "14A20", "14E16", "53D45" ], "keywords": [ "crepant transformation conjecture", "landau-ginzburg/calabi-yau correspondence", "fermat type", "local gromov-witten theory", "mlk correspondence" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1323181, "adsabs": "2014arXiv1410.5503P" } } }