{ "id": "1410.5407", "version": "v1", "published": "2014-10-20T19:47:41.000Z", "updated": "2014-10-20T19:47:41.000Z", "title": "Liouville quantum gravity and the Gaussian free field", "authors": [ "Nathanaƫl Berestycki", "Scott Sheffield", "Xin Sun" ], "comment": "23 pages", "categories": [ "math.PR" ], "abstract": "Given an instance $h$ of the Gaussian free field on a planar domain $D$ and a constant $\\gamma \\in (0,2)$, one can use various regularization procedures to make sense of the {\\em Liouville quantum gravity measure} $$\\mu_h := e^{\\gamma h(z)} dz.$$ It is known that the field $h$ a.s. determines the measure $\\mu_h$. We show that the converse is true: namely, given $\\mu_h$, it is a.s. possible to recover $h$. We then use this result to show that the path of a Liouville Brownian motion also determines the free field $h$.", "revisions": [ { "version": "v1", "updated": "2014-10-20T19:47:41.000Z" } ], "analyses": { "keywords": [ "gaussian free field", "liouville quantum gravity measure", "liouville brownian motion", "regularization procedures", "determines" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1322998, "adsabs": "2014arXiv1410.5407B" } } }