{ "id": "1410.5271", "version": "v1", "published": "2014-10-20T13:41:41.000Z", "updated": "2014-10-20T13:41:41.000Z", "title": "Invariable generation of prosoluble groups", "authors": [ "Eloisa Detomi", "Andrea Lucchini" ], "categories": [ "math.GR" ], "abstract": "A group $G$ is invariably generated by a subset $S$ of $G$ if $G= s^{g(s)} \\mid s\\in S$ for each choice of $g(s) \\in G$, $s \\in S$. Answering two questions posed by Kantor, Lubotzky and Shalev, we prove that the free prosoluble group of rank $d \\ge 2$ can not be invariably generated by a finite set of elements, while the free solvable profinite group of rank $d$ and derived length $l$ is invariably generated by precisely $l(d-1)+1$ elements.", "revisions": [ { "version": "v1", "updated": "2014-10-20T13:41:41.000Z" } ], "analyses": { "keywords": [ "invariable generation", "invariably", "free solvable profinite group", "free prosoluble group", "finite set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.5271D" } } }