{ "id": "1410.5178", "version": "v1", "published": "2014-10-20T08:02:45.000Z", "updated": "2014-10-20T08:02:45.000Z", "title": "On the cycle map of a finite group", "authors": [ "Masaki Kameko" ], "comment": "17 pages", "categories": [ "math.AG", "math.AT" ], "abstract": "Let p be an odd prime number. We show that there exists a finite group of order p^{p+3} whose the mod p cycle map from the mod p Chow ring of its classifying space to its ordinary mod p cohomology is not injective.", "revisions": [ { "version": "v1", "updated": "2014-10-20T08:02:45.000Z" } ], "analyses": { "subjects": [ "14C15", "55R40", "55R35" ], "keywords": [ "finite group", "cycle map", "odd prime number", "ordinary mod" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }