{ "id": "1410.5043", "version": "v1", "published": "2014-10-19T07:03:20.000Z", "updated": "2014-10-19T07:03:20.000Z", "title": "On the integral representations of $|Γ(z)|^2$ and its Fourier transform", "authors": [ "Nicolas Privault" ], "categories": [ "math.CA" ], "abstract": "We derive integral representations in terms of the Macdonald functions for the square modulus $s\\mapsto | \\Gamma ( a + i s ) |^2$ of the Gamma function and its Fourier transform when $a<0$ and $a\\not= -1,-2,\\ldots $, generalizing known results in the case $a>0$. This representation is based on a renormalization argument using modified Bessel functions of the second kind, and it applies to the representation of the solutions of the Fokker-Planck equation.", "revisions": [ { "version": "v1", "updated": "2014-10-19T07:03:20.000Z" } ], "analyses": { "keywords": [ "fourier transform", "gamma function", "square modulus", "macdonald functions", "derive integral representations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.5043P" } } }